
Maximum Likelihood Estimation

for All-Pass Time Series Models

Beth Andrews1

Northwestern University

Richard A. Davis1,2 and F. Jay Breidt2

Colorado State University

November 2, 2005

Abstract

An autoregressive-moving average model in which all roots of the autoregressive polyno-

mial are reciprocals of roots of the moving average polynomial and vice versa is called

an all-pass time series model. All-pass models generate uncorrelated (white noise) time

series, but these series are not independent in the non-Gaussian case. An approximate

likelihood for a causal all-pass model is given and used to establish asymptotic normality

for maximum likelihood estimators under general conditions. Behavior of the estimators

for finite samples is studied via simulation. A two-step procedure using all-pass models

to identify and estimate noninvertible autoregressive-moving average models is developed

and used in the deconvolution of a simulated water gun seismogram.
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1 Introduction

All-pass models are autoregressive-moving average (ARMA) models in which the roots of the autoregres-

sive polynomial are reciprocals of roots of the moving average polynomial and vice versa. They generate

uncorrelated (white noise) time series, but these series are not independent in the non-Gaussian case. An

all-pass series can be obtained by fitting a causal, invertible ARMA model (all the roots of the autoregressive

and moving average polynomials are outside the unit circle) to a series generated by a causal, noninvertible

ARMA model (all the roots of the autoregressive polynomial are outside the unit circle and at least one root

of the moving average polynomial is inside the unit circle). The residuals follow an all-pass model of order

r, where r is the number of roots of the true moving average polynomial inside the unit circle. Therefore, by

identifying the all-pass order of the residuals, the order of noninvertibility of the ARMA can be determined

without considering all possible configurations of roots inside and outside the unit circle, which is computa-

tionally prohibitive for large order models. As discussed in Breidt, Davis, and Trindade [6], all-pass models

can also be used to fit noncausal autoregressive models.

Noninvertible ARMA models have appeared, for example, in vocal tract filters (Chi and Kung [8], Chien,

Yang, and Chi [9]) and in the analysis of unemployment rates (Huang and Pawitan [16]). We use them in

this paper in the deconvolution of a simulated water gun seismogram. Other deconvolution approaches are

discussed in Blass and Halsey [3], Donoho [11], Godfrey and Rocca [13], Hsueh and Mendel [15], Lii and

Rosenblatt [17], Ooe and Ulrych [20], and Wiggins [21].

Estimation methods based on Gaussian likelihood, least-squares, or related second-order moment tech-

niques cannot identify all-pass models. Hence, cumulant-based estimators, using cumulants of order greater

than two, are often used to estimate such models (Chi and Kung [8], Chien, Yang, and Chi [9], Giannakis

and Swami [12]). Breidt, Davis, and Trindade [6] consider a least absolute deviations (LAD) approach which

is motivated by the approximate likelihood of an all-pass model with Laplace (two-sided exponential) noise.

Under general conditions, the LAD estimators are consistent and asymptotically normal.

Breidt, Davis, and Trindade [6] compare LAD estimates of all-pass model parameters with estimates
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obtained using a fourth-order moment technique and, in these simulation results, the LAD estimates are

considerably more efficient. LAD estimation, however, is relatively efficient only when the noise distribution

is Laplace. Therefore, in this paper, we use a maximum likelihood (ML) approach to estimate all-pass model

parameters. Although the ML estimation procedure is limited by the assumption that the probability density

function for the noise is known to within some parameter values, the residuals from a fitted all-pass model

obtained using LAD could indicate an appropriate noise density when it is unknown. The ML estimators

are consistent and asymptotically normal under general conditions. Related ML approaches are considered

in Breidt, Davis, Lii, and Rosenblatt [5] for noncausal autoregressive processes, in Lii and Rosenblatt [18]

for noninvertible moving average processes, and in Lii and Rosenblatt [19] for general ARMA processes.

Even though all-pass models are ARMA models, their special parameterization makes the results of Lii and

Rosenblatt [19] inapplicable.

In Section 2, we give an approximate likelihood for all-pass model parameters. Asymptotic normality and

consistency are established for ML estimators under general conditions and order selection is considered in

Section 3. Proofs of the lemmas used to establish the results of Section 3 can be found in the Appendix. The

behavior of the estimators for finite samples is studied via simulation in Section 4.1. A two-step procedure

using all-pass models to fit noninvertible ARMA models is developed in Section 4.2 and applied to the

deconvolution of a simulated water gun seismogram in Section 4.3.

2 Preliminaries

2.1 All-Pass Models

Let B denote the backshift operator (BkXt = Xt−k, k = 0,±1,±2, . . .) and let φ(z) = 1 − φ1z − · · · − φpz
p

be a pth-order autoregressive polynomial, where φ(z) 6= 0 for |z| = 1. The filter φ(B) is said to be causal if

all the roots of φ(z) are outside the unit circle in the complex plane. In this case, for a sequence {Wt},

φ−1(B)Wt =





∞
∑

j=0

ψjB
j



Wt =

∞
∑

j=0

ψjWt−j ,
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which is a function of only the past and present {Wt}. Note that if φ(B) is causal, the filter Bpφ(B−1) is

purely noncausal, and hence

B−pφ−1(B−1)Wt =





∞
∑

j=0

ψjB
−p−j



Wt =

∞
∑

j=0

ψjWt+p+j ,

a function of only the present and future {Wt}. See, for example, Chapter 3 of Brockwell and Davis [7].

Let φ0(z) = 1 − φ01z − · · · − φ0pz
p, where φ0(z) 6= 0 for |z| ≤ 1. Define φ00 = 1 and r = max{0 ≤

j ≤ p : φ0j 6= 0}. Then, a causal all-pass time series is the ARMA series {Xt} which satisfies the difference

equations

φ0(B)Xt =
Brφ0(B

−1)

−φ0r
Z∗

t (1)

or

Xt − φ01Xt−1 − · · · − φ0rXt−r = Z∗
t +

φ0,r−1

φ0r
Z∗

t−1 + · · · + φ01

φ0r
Z∗

t−r+1 −
1

φ0r
Z∗

t−r.

The true order of the all-pass model is r, and the series {Z∗
t } is an independent and identically distributed

(iid) sequence of random variables with mean 0 and variance σ2
0 ∈ (0,∞). We assume throughout that Z∗

1

has probability density function fσ0
(z; θ0) = σ−1

0 f(σ−1
0 z; θ0), where f is a density function symmetric about

zero and θ is a parameter of the density f . We also assume that the true value of θ, θ0 = (θ01, . . . , θ0d)
′, lies

in the interior of a parameter space Θ ⊆ IRd, d ≥ 1. Note that the roots of the autoregressive polynomial

φ0(z) are reciprocals of the roots of the moving average polynomial −φ−1
0r z

rφ0(z
−1) and vice versa.

The spectral density for {Xt} in (1) is

|e−irω|2|φ0(e
iω)|2

φ2
0r|φ0(e−iω)|2

σ2
0

2π
=

σ2
0

φ2
0r2π

,

which is constant for ω ∈ [−π, π], and thus {Xt} is an uncorrelated sequence. In the case of Gaussian {Z∗
t },

this implies that {Xt} is iid N(0, σ2
0φ

−2
0r ), but independence does not hold in the non-Gaussian case if r ≥ 1

(see Breidt and Davis [4]). The model (1) is called all-pass because the power transfer function of the all-pass

filter passes all the power for every frequency in the spectrum. In other words, an all-pass filter does not

change the distribution of power over the spectrum.
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We can express (1) as

φ0(B)Xt =
Bpφ0(B

−1)

−φ0r
Zt, (2)

where {Zt} = {Z∗
t+p−r} is an iid sequence of random variables with mean 0, variance σ2

0 , and probability

density function fσ0
(z; θ0). Rearranging (2) and setting zt = φ−1

0r Zt, we have the backward recursion

zt−p = φ01zt−p+1 + · · · + φ0pzt − (Xt − φ01Xt−1 − · · · − φ0pXt−p).

An analogous recursion for an arbitrary, causal autoregressive polynomial φ(z) = 1 − φ1z − · · · − φpz
p can

be defined as follows:

zt−p(φ) =

{ 0, t = n+ p, . . . , n+ 1,

φ1zt−p+1(φ) + · · · + φpzt(φ) − φ(B)Xt, t = n, . . . , p+ 1,
(3)

where φ := (φ1, . . . , φp)
′. If φ0 := (φ01, . . . , φ0p)

′ = (φ01, . . . , φ0r , 0, . . . , 0)′, note that {zt(φ0)}n−p
t=1 closely

approximates {zt}n−p
t=1 ; the error is due to the initialization with zeros. Although {zt} is iid, {zt(φ0)}n−p

t=1 is

not iid if r ≥ 1.

2.2 Approximating the Likelihood

In this subsection, we ignore the effect of the recursion initialization in (3), and write

−φ(B−1)Bpzt(φ) = φ(B)Xt.

Let q = max{0 ≤ j ≤ p : φj 6= 0}, α = (α1, . . . , αp+d+1)
′ = (φ1, . . . , φp, σ/|φq|, θ1, . . . , θd)

′, and α0 =

(α01, . . . , α0,p+d+1)
′ = (φ01, . . . , φ0p, σ0/|φ0r|, θ01, . . . , θ0d)

′. Following equation (2.7) in Breidt, Davis, and

Trindade [6], we approximate the log-likelihood of α given a realization of length n, {Xt}n
t=1, with

L(α) =

n−p
∑

t=1

ln fσ (φqzt(φ); θ) + (n− p) ln |φq|

=

n−p
∑

t=1

{ln f(zt(φ)/αp+1; θ) − lnαp+1}

=:

n−p
∑

t=1

gt(α), (4)

where {zt(φ)} can be computed recursively from (3).
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3 Asymptotic Results

3.1 Parameter Estimation

In order to establish asymptotic normality for the MLE of α, we make the following additional, yet still

fairly general, assumptions on f . Similar assumptions are made in Breidt, Davis, Lii, and Rosenblatt [5]

and Lii and Rosenblatt [18, 19]. Any symmetric, non-Gaussian density function that is strictly positive

and sufficiently smooth will satisfy these assumptions. Examples of such densities are given in the Remarks

following Theorem 1. They include a rescaled Students’ t-density and a weighted average of Gaussian

densities.

• A1 For all s ∈ IR and all θ = (θ1, . . . , θd)
′ ∈ Θ, f(s; θ) > 0 and f(s; θ) is twice continuously

differentiable with respect to (s, θ1, . . . , θd)
′.

• A2 For all θ in some neighborhood of θ0,
∫

sf ′(s; θ) ds = sf(s; θ)|∞−∞ −
∫

f(s; θ) ds = −1.

• A3
∫

f ′′(s; θ0) ds = f ′(s; θ0)|∞−∞ = 0.

• A4
∫

s2f ′′(s; θ0) ds = s2f ′(s; θ0)|∞−∞ − 2
∫

sf ′(s; θ0) ds = 2.

• A5 1 <
∫

(f ′(s; θ0))
2 /f(s; θ0) ds.

• A6 If K̃ := α−2
0,p+1

{

∫ s2(f ′(s;θ0))
2

f(s;θ0)
ds− 1

}

, L :=

[

−α−1
0,p+1

∫ sf ′(s;θ0)
f(s;θ0)

∂f(s;θ0)
∂θj

ds

]d

j=1

, and

I :=

[

∫

1

f(s;θ0)
∂f(s;θ0)

∂θj

∂f(s;θ0)
∂θk

ds

]d

j,k=1

, the matrix







K̃ L′

L I






is positive definite.

• A7 For j, k = 1, . . . , d and all θ in some neighborhood of θ0,

– f(s; θ) is dominated by some function f1(s) such that
∫

s2f1(s) ds <∞, and

– s2
(f ′(s;θ))

2

f2(s;θ)
, s2
∣

∣

∣

f ′′(s;θ)

f(s;θ)

∣

∣

∣, |s| 1

f(s;θ)

∣

∣

∣

∂
∂θj

f ′(s; θ)
∣

∣

∣, 1

f2(s;θ)

(

∂
∂θj

f(s; θ)
)2

, and 1

f(s;θ)

∣

∣

∣

∂2

∂θj∂θk
f(s; θ)

∣

∣

∣ are

dominated by a1 + a2|s|c1 , where a1, a2, c1 are non-negative constants and
∫

|s|c1f1(s) ds <∞.
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Theorem 1 If f satisfies A1–A7, then there exists a sequence of maximizers

α̂ML = (φ̂
′

ML, α̂p+1,ML, θ̂
′

ML)′

of L(·) in (4) such that

n1/2(α̂ML − α0)
d→ Y ∼ N

(

0,Σ−1
)

, (5)

where

Σ−1 :=















σ2

0

2(σ2

0
J̃−1)

Γ−1
p 0p×1 0p×d

01×p (K̃ − L′I−1L)−1 −K̃−1L′(I − LK̃−1L′)−1

0d×p −(I − LK̃−1L′)−1LK̃−1 (I − LK̃−1L′)−1















,

J̃ := σ−2
0

∫

(f ′(s; θ0))
2/f(s; θ0) ds, Γp := [γ(j − k)]

p
j,k=1, and γ(·) is the autocovariance function of the

autoregressive process {(1/φ0(B))Zt}.

Proof: L(α) − L(α0) = Sn(
√
n (α − α0)), where Sn(·) is defined in Lemma 3 of the Appendix. Because

Y := Σ−1N maximizes the limit S(·) in Lemma 3, the result (5) follows by Remark 1 of Davis, Knight, and

Liu [10]. 2

Remark 1: Note that φ̂ML is asymptotically independent of (α̂p+1,ML, θ̂
′

ML)′. Given n observations from

{Zt}, there exists a sequence of maximizers (σ̂, θ̂
′
)′ of the log-likelihood

∑n
t=1{ln f(Zt/σ; θ)− lnσ} such that

n1/2[(σ̂, θ̂
′
)′ − (σ0,θ

′
0)

′]
d→ YZ ∼ N

(

0,Σ−1
Z

)

,

where

Σ−1
Z :=







φ2
0r(K̃ − L′I−1L)−1 −|φ0r|K̃−1L′(I − LK̃−1L′)−1

−|φ0r|(I − LK̃−1L′)−1LK̃−1 (I − LK̃−1L′)−1







and Σ−1
Z does not depend on φ0r.

Remark 2: Using A2 and the Cauchy-Schwarz inequality,

1 =

{∫

s
f ′(s; θ0)

f(s; θ0)
f(s; θ0) ds

}2

≤
{∫

s2f(s; θ0) ds

}

{

∫ (

f ′(s; θ0)

f(s; θ0)

)2

f(s; θ0) ds

}

(6)

= σ2
0 J̃ ,
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with equality in (6) if and only if f is Gaussian. Thus, A5 holds for non-Gaussian f . Further,

1 =

{∫

s
f ′(s; θ0)

f(s; θ0)
f(s; θ0) ds

}2

<

{

∫

s2
(

f ′(s; θ0)

f(s; θ0)

)2

f(s; θ0) ds

}

{∫

f(s; θ0) ds

}

(7)

= α2
0,p+1K̃ + 1,

so that K̃ > 0. We do not have equality in (7) because, by Cauchy-Schwarz, there is equality if and only if

sf ′(s; θ0)/f(s; θ0) = −1 for all s ∈ IR which cannot ever be the case.

Remark 3: The asymptotic covariance matrix for φ̂ML is a scalar multiple of n−1σ2
0Γ

−1
p , the asymptotic

covariance matrix for the Gaussian likelihood estimators for the corresponding pth-order autoregressive

process. The same property holds for LAD estimators of all-pass model parameters, as shown in Breidt,

Davis, and Trindade [6]. The LAD estimators are obtained by maximizing the likelihood of an all-pass model

with Laplace noise. This yields a modified LAD criterion, which can be used even if the underlying noise

distribution is not Laplace. The constant in (5) is

1

2(σ2
0 J̃ − 1)

, (8)

while, in the LAD case, the appropriate constant is

Var (|Z1|)
2 (2σ2

0fσ0
(0; θ0) − E|Z1|)2

. (9)

(Breidt, Davis, and Trindade [6] contains an error in the calculation of the asymptotic variance; see An-

drews [1] for the correction.) Although the Laplace density, f(s) = exp(−
√

2|s|)/
√

2, does not meet assump-

tions A1–A7, E|Z1| = σ0/
√

2, fσ0
(0) = 1/(

√
2σ0), and J̃ = 2σ−2

0 , so that (8) and (9) are both 1/2 for this

density.

Remark 4: We obtain the asymptotic relative efficiency (ARE) of ML to LAD for the autoregressive

parameters φ0 = (φ01, . . . , φ0p)
′ by dividing (9) by (8):

ARE = (σ2
0 J̃ − 1)

Var (|Z1|)
(2σ2

0fσ0
(0; θ0) − E|Z1|)2

.
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The density function

f(s; θ) =

√

θ

θ − 2

Γ((θ + 1)/2)

Γ(θ/2)

1√
θπ

1

(1 + s2/(θ − 2))
(θ+1)/2

(10)

is symmetric about zero, has variance one, and satisfies assumptions A1–A7 with c1 = 2 when Θ ⊆ (2,∞). If

σ0 = (θ0/(θ0−2))1/2, then fσ0
(s; θ0) = σ−1

0 f(σ−1
0 s; θ0) is the Students’ t-density with θ0 degrees of freedom.

In this case,

E|Z1| = 2σ0

√
θ0 − 2

θ0 − 1

Γ((θ0 + 1)/2)

Γ(θ0/2)
√
π
,

fσ0
(0; θ0) = σ−1

0

Γ((θ0 + 1)/2)

Γ(θ0/2)
√

(θ0 − 2)π
,

and

J̃ = σ−2
0

θ0(θ0 + 1)

(θ0 − 2)(θ0 + 3)
,

so the ARE of ML to LAD is

ARE =
6

(θ0 + 3)

{

π

4
(θ0 − 1)2

(

Γ(θ0/2)

Γ((θ0 + 1)/2)

)2

− (θ0 − 2)

}

. (11)

When θ0 = 3, the value of (11) is 2(0.7337) = 1.4674, and thus ML is nearly 50% more efficient than LAD for

the Students’ t-distribution with three degrees of freedom. For values of θ0 greater than three, (11) is even

larger than 1.4674. As θ0 → ∞, however, the Students’ t-distribution approaches the standard Gaussian

distribution, and so the autoregressive parameters cannot be consistently estimated.

Remark 5: The Gaussian scale mixture density

f(s; (θ1, θ2)
′) =

θ1

θ2
√

2π
exp

(−s2
2θ22

)

+
(1 − θ1)

3/2

√

1 − θ1θ22
√

2π
exp

(−s2(1 − θ1)

2(1 − θ1θ22)

)

(12)

is symmetric about 0 and satisfies A1–A7 with c1 = 4 when Θ ⊆ (0, 1)× (0, 1). In this case, Z1 is N(0, σ2
0θ

2
02)

with probability θ01 and N(0, σ2
0(1 − θ01θ

2
02)/(1 − θ01)) with probability 1 − θ01. Some values of ARE for

ML to LAD for the autoregressive parameters are given in Table 1. Other symmetric densities that satisfy

A1–A7 can be constructed similarly by mixing Gaussian and Students’ t-densities.
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θ01 θ02 ARE
0.1 0.2 1.5506
0.1 0.8 2.1506
0.4 0.4 1.4988
0.4 0.6 1.7124
0.6 0.4 1.6012
0.6 0.6 1.8327
0.9 0.2 1.6395
0.9 0.8 2.9997

Table 1: AREs for ML to LAD when f is the Gaussian scale mixture density.

Remark 6: If the parameter θ is dropped, the logistic density

f(s) =
π√
3

exp (−sπ/
√

3)
[

1 + exp (−sπ/
√

3)
]2

also satisfies the assumptions. ARE for ML to LAD equals 1.9760 in this case.

Remark 7: By A7 and the dominated convergence theorem,

1

2(σ2
0 J̃ − 1)

=
1

2

(∫

(f ′(s; θ0))
2

f(s; θ0)
ds− 1

)−1

,

K̃, L, and I are continuous with respect to θ at θ0. Thus, because θ̂ML
P→ θ0,

1

2

(

∫

(f ′(s; θ̂ML))2

f(s; θ̂ML)
ds− 1

)−1

, (13)

1

α̂2
p+1,ML

(

∫

s2(f ′(s; θ̂ML))2

f(s; θ̂ML)
ds− 1

)

, (14)

[

−1

α̂p+1,ML

∫

sf ′(s; θ̂ML)

f(s; θ̂ML)

∂f(s; θ̂ML)

∂θj
ds

]d

j=1

, (15)

and
[

∫

1

f(s; θ̂ML)

∂f(s; θ̂ML)

∂θj

∂f(s; θ̂ML)

∂θk
ds

]d

j,k=1

(16)

are consistent estimators of [2(σ2
0 J̃ − 1)]−1, K̃, L, and I respectively.
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3.2 Order Selection

In practice, the order r of an all-pass model is usually unknown. Therefore, we present the following corollary

to Theorem 1 for use in order selection.

Corollary 1 Assume f satisfies A1–A7. If the true order of the all-pass model is r and the order of the

fitted model is p > r, then n1/2φ̂p,ML
d→ N(0, [2(σ2

0 J̃ − 1)]−1).

Proof: By Problem 8.15 in Brockwell and Davis [7], the pth diagonal element of Γ−1
p is σ−2

0 if p > r, and so

the result follows from (5). 2

A practical approach to order determination using a large sample follows. This procedure is analogous

to using the partial autocorrelation function to identify the order of an autoregressive model.

1. For some large P , fit all-pass models of order p, p = 1, 2, . . . , P , via ML and obtain the pth coefficient,

φ̂p,ML, for each.

2. Let the model order r be the smallest order beyond which the estimated coefficients are statistically in-

significant; that is, r = min{0 ≤ p ≤ P : |φ̂j,ML| < 1.96 λ̂ n−1/2 for j > p}, where

λ̂ :=
(

2
∫

(f ′(s; θ̂ML))2/f(s; θ̂ML) ds− 2
)−1/2

and θ̂ML is the MLE from the fitted P th-order model.

4 Numerical Results

4.1 Simulation Study

In this section, we describe a simulation experiment to assess the quality of the asymptotic approximations

for finite samples. We used both the rescaled Students’ t-density (10) and the Gaussian scale mixture

density (12). For the rescaled Students’ t-density, we let σ0 = (θ0/(θ0 − 2))1/2, so Z1 followed the Students’

t-distribution with θ0 degrees of freedom.

To reduce the possibility of the optimizer being trapped at local maxima, we used 250 starting values

for each of the 1000 replicates. The initial values for φ1, . . . , φp were uniformly distributed in the space
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of partial autocorrelations and then mapped to the space of autoregressive coefficients using the Durbin-

Levinson algorithm (Brockwell and Davis [7], Proposition 5.2.1). That is, for a model of order p, the kth

starting value (φ
(k)
p1 , . . . , φ

(k)
pp )′ was computed recursively as follows:

1. Draw φ
(k)
11 , φ

(k)
22 , . . . , φ

(k)
pp iid uniform(−1, 1).

2. For j = 2, . . . , p, compute














φ
(k)
j1

...

φ
(k)
j,j−1















=















φ
(k)
j−1,1

...

φ
(k)
j−1,j−1















− φ
(k)
jj















φ
(k)
j−1,j−1

...

φ
(k)
j−1,1















.

With (φ
(k)
p1 , . . . , φ

(k)
pp )′ and a realization of length n, we obtained residuals using (3). To get the kth starting

value α
(k)
p+1, we divided the standard deviation of the residuals by |φ(k)

pq |, where q := max{0 ≤ j ≤ p : φ
(k)
pj 6=

0}. Finally, we randomly chose the starting values for θ.

The log-likelihood was evaluated at each of the 250 candidate values. When Z1 follows the Students’

t-distribution, the log-likelihood function is almost constant with respect to (αp+1, θ)
′ near (φ′

0, α0,p+1, θ0)
′,

and so the maximum can be difficult to find. This is not the case when Z1 is a Gaussian scale mixture.

Therefore, when using (10), the collection of initial values was reduced to the nine with the highest likelihoods

plus α0, and, when using (12), the collection of initial values was reduced to the two with the highest

likelihoods plus α0. We found optimized values by implementing the Hooke and Jeeves [14] algorithm and

using the ten or three values as starting points. The optimized value with the highest likelihood was selected

to be α̂ML. We constructed confidence intervals for the elements of α0 using α̂ML, (5), and the estimators

(13)–(16).

Results of the simulations appear in Tables 2 and 3. In the tables, we see that the MLEs are approximately

unbiased and the confidence interval coverages are fairly close to the nominal 95% level, particularly when

n = 5000. For the Students’ t-distribution, the asymptotic standard deviations tend to understate the true

variability of the MLEs when n = 500, but are more accurate when n = 5000. The asymptotic standard

deviations are close to the empirical standard deviations in the Gaussian scale mixture case when n = 500
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Asymptotic Empirical
mean std.dev. % coverage

n mean std.dev. (c.i.) (c.i.) (c.i.)
500 φ1 = 0.5 0.0274 0.4971 0.0315 93.0

(0.4951,0.4990) (0.0301,0.0329) (91.4,94.6)
α2 = 3.4641 0.4177 3.5533 0.6277 90.0

(3.5144,3.5922) (0.5995,0.6546) (88.1,91.9)
θ = 3.0 0.4480 3.1123 0.5008 95.8

(3.0812,3.1433) (0.4783,0.5223) (94.6,97.0)
5000 φ1 = 0.5 0.0087 0.4997 0.0091 93.4

(0.4991,0.5003) (0.0087,0.0095) (91.9,94.9)
α2 = 3.4641 0.1321 3.4787 0.1427 94.0

(3.4699,3.4876) (0.1363,0.1489) (92.5,95.5)
θ = 3.0 0.1417 3.0084 0.1533 94.0

(2.9989,3.0179) (0.1464,0.1599) (92.5,95.5)
500 φ1 = 0.3 0.0290 0.2993 0.0345 90.6

(0.2971,0.3014) (0.0330,0.0360) (88.8,92.4)
φ2 = 0.4 0.0290 0.3964 0.0350 90.1

(0.3942,0.3986) (0.0335,0.0365) (88.2,92.0)
α3 = 4.3301 0.5222 4.4842 0.9460 94.0

(4.4256,4.5428) (0.9036,0.9866) (92.5,95.5)
θ = 3.0 0.4480 3.0789 0.4722 94.8

(3.0497,3.1082) (0.4510,0.4925) (93.4,96.2)
5000 φ1 = 0.3 0.0092 0.2999 0.0095 94.0

(0.2993,0.3005) (0.0091,0.0099) (92.5,95.5)
φ2 = 0.4 0.0092 0.3999 0.0094 94.6

(0.3993,0.4005) (0.0090,0.0098) (93.2,96.0)
α3 = 4.3301 0.1651 4.3421 0.1740 94.6

(4.3313,4.3528) (0.1662,0.1815) (93.2,96.0)
θ = 3.0 0.1417 3.0079 0.1458 95.2

(2.9989,3.0169) (0.1393,0.1521) (93.9,96.5)

Table 2: Empirical means, standard deviations, and percent coverages of nominal 95% confidence intervals

for maximum likelihood estimates of all-pass model parameters when f is the rescaled Students’ t-density.

For each sample size n, empirical confidence intervals were computed using standard asymptotic theory for

1000 iid replicates. Asymptotic means and standard deviations were computed using Theorem 1.
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Asymptotic Empirical
mean std.dev. % coverage

n mean std.dev. (c.i.) (c.i.) (c.i.)
500 φ1 = 0.5 0.0218 0.4989 0.0232 93.3

(0.4975,0.5004) (0.0222,0.0242) (91.8,94.8)
α2 = 4.0 0.2045 3.9984 0.1928 96.2

(3.9865,4.0104) (0.1841,0.2010) (95.0,97.4)
θ1 = 0.6 0.0476 0.6001 0.0492 92.5

(0.5970,0.6031) (0.0470,0.0513) (90.9,94.1)
θ2 = 0.4 0.0370 0.3995 0.0378 94.1

(0.3972,0.4019) (0.0361,0.0395) (92.6,95.6)
5000 φ1 = 0.5 0.0069 0.5000 0.0070 94.1

(0.4995,0.5004) (0.0067,0.0073) (92.6,95.6)
α2 = 4.0 0.0646 3.9976 0.0643 94.3

(3.9936,4.0016) (0.0614,0.0671) (92.9,95.7)
θ1 = 0.6 0.0150 0.6001 0.0141 95.7

(0.5992,0.6010) (0.0135,0.0147) (94.4,97.0)
θ2 = 0.4 0.0117 0.3998 0.0114 95.5

(0.3991,0.4005) (0.0109,0.0119) (94.2,96.8)
500 φ1 = 0.3 0.0230 0.2989 0.0239 93.7

(0.2974,0.3004) (0.0228,0.0249) (92.2,95.2)
φ2 = 0.4 0.0230 0.3990 0.0233 95.2

(0.3975,0.4004) (0.0223,0.0243) (93.9,96.5)
α3 = 5.0 0.2555 4.9902 0.2591 93.3

(4.9742,5.0063) (0.2475,0.2702) (91.8,94.8)
θ1 = 0.6 0.0476 0.5972 0.0483 94.5

(0.5942,0.6001) (0.0461,0.0503) (93.1,95.9)
θ2 = 0.4 0.0370 0.3977 0.0367 94.7

(0.3954,0.4000) (0.0351,0.0383) (93.3,96.1)
5000 φ1 = 0.3 0.0073 0.3000 0.0074 95.1

(0.2995,0.3004) (0.0070,0.0077) (93.8,96.4)
φ2 = 0.4 0.0073 0.3996 0.0072 95.5

(0.3991,0.4000) (0.0069,0.0075) (94.2,96.8)
α3 = 5.0 0.0806 4.9960 0.0795 94.9

(4.9911,5.0010) (0.0759,0.0829) (93.5,96.3)
θ1 = 0.6 0.0150 0.6005 0.0147 94.5

(0.5996,0.6014) (0.0141,0.0154) (93.1,95.9)
θ2 = 0.4 0.0117 0.4006 0.0117 95.3

(0.3999,0.4013) (0.0112,0.0122) (94.0,96.6)

Table 3: Empirical means, standard deviations, and percent coverages of nominal 95% confidence intervals

for maximum likelihood estimates of all-pass model parameters when f is the Gaussian scale mixture density.

For each sample size n, empirical confidence intervals were computed using standard asymptotic theory for

1000 iid replicates. Asymptotic means and standard deviations were computed using Theorem 1.
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and n = 5000. Normal probability plots of the MLEs show that approximate normality is achieved when

n = 5000.

4.2 Noninvertible ARMA Modeling

As mentioned in the Introduction, all-pass models can be used to fit causal, noninvertible ARMA models.

Suppose the series {Xt} follows the model

φ(B)Xt = θi(B)θni(B)Zt, (17)

where φ(z) = 1 − φ1z − · · · − φpz
p is a causal AR(p) polynomial (all the roots of φ(z) fall outside the unit

circle), θi(z) = 1 + θi,1z + · · · + θi,qz
q is an invertible MA(q) polynomial (all the roots of θi(z) fall outside

the unit circle), θni(z) = 1 + θni,1z + · · · + θni,rz
r is a purely noninvertible MA(r) polynomial such that

θni(z) 6= 0 for |z| = 1 (all the roots of θni(z) fall inside the unit circle), and {Zt} is iid. If θ
(i)
ni (z) is the

invertible rth order polynomial with roots that are the reciprocals of the roots of θni(z) and, using Gaussian

likelihood or another second-order moment technique, {Xt} is mistakenly modeled as the causal, invertible

ARMA

φ(B)Xt = θi(B)θ
(i)
ni (B)Wt,

then {Wt} satisfies

Wt =
θni(B)

θ
(i)
ni (B)

Zt =
Brθ

(i)
ni (B−1)

θ
(i)
ni,rθ

(i)
ni (B)

Zt,

where θ
(i)
ni,r is the coefficient of zr in θ

(i)
ni (z). So, {Wt} follows the causal all-pass model

θ
(i)
ni (B)Wt =

Brθ
(i)
ni (B−1)

θ
(i)
ni,r

Zt.

When fitting (17), it is, therefore, not necessary to look at all possible configurations of roots of the MA

polynomial inside and outside the unit circle. First, fit a causal, invertible ARMA(p, q + r) model to the

data using a method such as Gaussian maximum likelihood, and obtain the residuals {Ŵt} and estimates

of φ(z) and θi(z)θ
(i)
ni (z). Appropriate values for p and q + r can be found using a standard order selection
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procedure such as the Akaike information criterion. Then fit a causal all-pass model of order r to {Ŵt} and

obtain θ̂
(i)
ni (z), an estimate of θ

(i)
ni (z). An appropriate r can be determined using the all-pass order selection

procedure described in Section 3.2. The rth order polynomial with roots that are reciprocals of the roots of

θ̂
(i)
ni (z) is an estimate of θni(z). An estimate of θi(z) can be obtained by canceling the roots of the invertible

MA(q + r) polynomial from the Gaussian likelihood fit which correspond to roots of θ̂
(i)
ni (z).

4.3 Deconvolution

In this example, we simulate a seismogram {Xt}1000
t=1 via Xt =

∑

k βkZt−k, where {βk} is the water gun

wavelet sequence shown in Figure 8(2) of Lii and Rosenblatt [17] and {Zt} is a reflectivity sequence simulated

here as iid noise from the Students’ t-distribution with five degrees of freedom. It is assumed that the

seismogram is observed, but the wavelet and reflectivity sequences are unknown, as would be the case in

a real deconvolution problem. We model the seismogram as a possibly noninvertible ARMA using the

procedure described in Section 4.2 and attempt to reconstruct the wavelet and reflectivity sequences. This

problem is of interest because, for an observed water gun seismogram, the reflectivity sequence corresponds

to reflection coefficients for layers of the earth.

The simulated seismogram {Xt} is shown in Figure 1(a). The corrected Akaike information criterion

indicates that an ARMA(12, 13) model is appropriate for the data, and the causal, invertible ARMA fit to

{Xt} using Gaussian maximum likelihood is Xt = φ−1(B)θ(B)Wt, where

φ(B) = 1 − 0.1013B + 0.1137B2 − 0.0776B3 + 0.0542B4 − 0.0326B5 + 0.0086B6 − 0.2280B7

+ 0.1135B8 + 0.2242B9 − 0.0263B10 − 0.0793B11 + 0.1587B12

and

θ(B) = 1 − 0.0589B − 0.1843B2 + 0.0918B3 − 0.1068B4 − 0.0226B5 − 0.2400B6 + 0.1196B7

+ 0.2206B8 + 0.3376B9 − 0.2004B10 − 0.0154B11 + 0.2872B12 + 0.2851B13.

The residuals from this fitted model are denoted {Ŵt}. From the sample autocorrelation functions of {Ŵt},
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Figure 1: (a) The simulated seismogram of length 1000, {Xt}, and the sample autocorrelation functions with

bounds ±1.96/
√

1000 for (b) {Ŵt}, (c) {Ŵ 2
t }, and (d) {|Ŵt|}.

{Ŵ 2
t }, and {|Ŵt|} in Figure 1(b)–(d), it appears the ARMA residuals are uncorrelated but dependent,

suggesting the inappropriateness of a causal, invertible ARMA model.

The all-pass order selection procedure described in Section 3.2 indicates that an all-pass model of order

two provides a good fit for {Ŵt} and, when (10) is used for f , the MLEs for this fitted all-pass model are

α̂ML = (φ̂1, φ̂2, α̂3, θ̂)
′

= (1.5286,−0.5908, 1097690.917, 4.7232)′,

with standard errors 0.0338, 0.0338, 44515.2174, and 0.7057 respectively. The sample autocorrelation func-

tions for the squares and absolute values of {Ẑt}, the residuals from the fitted all-pass model, are shown in

Figure 2. Because the series {Ẑt} appears independent,

Xt =
B2(1 − 1.5286B−1 + 0.5908B−2)

0.5908(1 − 1.5286B + 0.5908B2)

θ(B)

φ(B)
Zt (18)
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Figure 2: Diagnostics for the all-pass model of order two fit to the causal, invertible ARMA residuals: the

sample autocorrelation functions with bounds ±1.96/
√

1000 for (a) {Ẑ2
t } and (b) {|Ẑt|}.

seems to be a more appropriate model for {Xt}.

Since the simulated reflectivity sequence is iid with the Students’ t-distribution and five degrees of free-

dom, in an effort to reconstruct the wavelet and reflectivity sequences, we express the right hand side of (18)

as

−(0.5908)(1097690.917)
√

3/5
B2(1 − 1.5286B−1 + 0.5908B−2)

0.5908(1 − 1.5286B + 0.5908B2)

θ(B)

φ(B)
Z̃t, (19)

where {Z̃t} is iid with density
√

3/5 f(
√

3/5 s; 5), the Students’ t-density with five degrees of freedom. Note

that no roots of the polynomial in the denominator of (19) cancel exactly with roots of the polynomial in

the numerator. So, we can directly fit a causal, noninvertible ARMA(12, 13) with two roots of the moving

average polynomial inside the unit circle to {Xt}. Using maximum likelihood estimation with the Students’

t-density and five degrees of freedom, this yields

Xt = −(0.5908)(1097690.917)
√

3/5 φ̃−1(B)θ̃(B)Z̃t, (20)

where

φ̃(B) = 1 − 0.0501B + 0.4967B2 − 0.0664B3 + 0.3255B4 − 0.0552B5 + 0.2254B6 − 0.2374B7

+ 0.0420B8 − 0.0323B9 − 0.0669B10 − 0.1950B11 − 0.0690B12
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Figure 3: The recorded water gun wavelet and its estimate.

and

θ̃(B) = 1 − 1.1726B − 0.3091B2 − 0.3545B3 − 0.1261B4 + 0.0095B5 + 0.0673B6 + 0.6313B7

+ 0.2687B8 + 0.7172B9 − 0.0335B10 + 0.5541B11 + 0.5199B12 + 0.8270B13.

As shown in Figure 3,

−(0.5908)(1097690.917)
√

3/5 φ̃−1(B)θ̃(B)

provides a good estimate of the water gun wavelet sequence and, as shown in Figure 4, the residuals from

(20) are nearly identical to the reflectivity sequence up to a constant multiple.

Appendix

This section contains proofs of the lemmas used to establish Theorem 1. First, for an arbitrary, causal

autoregressive polynomial φ(z), define ϕ(z) = φ1z + · · · + φpz
p = 1 − φ(z), and define ϕ0(z) = 1 − φ0(z).

Note that, for t = 1, . . . , n− p,

φ(B)Xt+p = −zt(φ) + ϕ(B−1)zt(φ),



Maximum Likelihood Estimation for All-Pass Models 19

0 200 400 600 800 1000

−1
0

0
10

20

(a) Simulated Reflectivity Sequence

0 200 400 600 800 1000

−1
0

0
10

20

(b) Estimated Reflectivity Sequence

Figure 4: The simulated reflectivity sequence and its estimate.

so, if j = 1, . . . , p, then

∂

∂φj

{

ϕ(B−1)zt(φ)
}

= −Xt+p−j +
∂zt(φ)

∂φj
. (21)

Also, if j = 1, . . . , p, then

∂

∂φj

{

ϕ(B−1)zt(φ)
}

=
∂

∂φj
{φ1zt+1(φ) + · · · + φpzt+p(φ)}

= ϕ(B−1)
∂zt(φ)

∂φj
+ zt+j(φ). (22)

Equating (21) and (22) and solving for ∂zt(φ)/∂φj, we obtain

∂zt(φ)

∂φj
=

1

φ(B−1)
{Xt+p−j + zt+j(φ)} . (23)

Evaluating (23) at the true value of φ and ignoring the effect of recursion initialization, we have

∂zt(φ0)

∂φj
=

1

φ0(B−1)

{−φ0(B
−1)Bpzt+p−j

φ0(B)
+ zt+j(φ0)

}

≃ −zt−j

φ0(B)
+

zt+j

φ0(B−1)
, (24)

where the first term is an element of σ(zt−1, zt−2, . . .) and the second term is an element of σ(zt+1, zt+2, . . .)

because φ0(B) is a causal operator and φ0(B
−1) is a purely noncausal operator. It follows that (24) is
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independent of zt = φ−1
0r Zt.

Thus, for gt(·) from (4) and j = 1, . . . , p,

∂gt(α0)

∂αj
=

f ′ (zt(φ0)/α0,p+1; θ0)

f (zt(φ0)/α0,p+1; θ0)

1

α0,p+1

∂zt(φ0)

∂φj

≃ f ′ (zt/α0,p+1; θ0)

f (zt/α0,p+1; θ0)

1

α0,p+1

{−zt−j

φ0(B)
+

zt+j

φ0(B−1)

}

(25)

=:
∂g∗t (α0)

∂αj
.

The expected value of (25) is zero by the independence of its two terms.

We now compute the autocovariance function γ†(h) of the zero-mean, stationary process
{

u′
p [∂g∗t (α0)/∂αj]

p
j=1

}

for up ∈ IRp:

γ†(h) = E

{

u′
p

[

∂g∗t (α0)

∂αj

]p

j=1

([

∂g∗t+h(α0)

∂αk

]p

k=1

)′

up

}

= u′
p [νjk(h)]

p
j,k=1 up,

where

νjk(h) :=







2γ(j − k)J̃ , h = 0,

−ψ|h|−jψ|h|−k, h 6= 0,

and the ψℓ are given by
∑∞

ℓ=0 ψℓz
ℓ = 1/φ0(z) with ψℓ = 0 for ℓ < 0. Thus,

γ†(0) + 2

∞
∑

h=1

γ†(h) = u′
p







[2J̃γ(j − k)]pj,k=1 − 2

[

∞
∑

h=1

ψh−jψh−k

]p

j,k=1







up = 2(σ2
0 J̃ − 1)u′

pσ
−2
0 Γpup.

By A5, σ2
0 J̃ − 1 > 0.

Next,

∂gt(α0)

∂αp+1
=

−f ′ (zt(φ0)/α0,p+1; θ0)

f (zt(φ0)/α0,p+1; θ0)

zt(φ0)

α2
0,p+1

− 1

α0,p+1

≃ −f ′ (zt/α0,p+1; θ0)

f (zt/α0,p+1; θ0)

zt

α2
0,p+1

− 1

α0,p+1
(26)

=:
∂g∗t (α0)

∂αp+1
.

The expected value of (26) is zero and the variance is K̃. Also, the sequence (26) is iid and orthogonal to

the corresponding partials for αj , j = 1, . . . , p, in (25).
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For j = p+ 2, . . . , p+ d+ 1,

∂gt(α0)

∂αj
=

1

f (zt(φ0)/α0,p+1; θ0)

∂f (zt(φ0)/α0,p+1; θ0)

∂θj−p−1

≃ 1

f (zt/α0,p+1; θ0)

∂f (zt/α0,p+1; θ0)

∂θj−p−1
(27)

=:
∂g∗t (α0)

∂αj
.

By A7 and the dominated convergence theorem, the expected value of (27) is zero. In addition, the series
{

[∂g∗t (α0)/∂αj]
p+d+1
j=p+2

}

is iid, has covariance matrix I, and is orthogonal to the partials for αj , j = 1, . . . , p,

in (25). The expectation of (∂g∗t (α0)/∂αp+1) [∂g∗t (α0)/∂αj]
p+d+1
j=p+2 is L.

The preceding calculations lead directly to the following lemma.

Lemma 1 If f satisfies A1–A7, then, as n→ ∞,

n−1/2

n−p
∑

t=1

∂gt(α0)

∂α

d→ N ∼ N (0,Σ) ,

where

Σ =















2(σ2
0 J̃ − 1)σ−2

0 Γp 0p×1 0p×d

01×p K̃ L′

0d×p L I















.

Proof: Note that, for t = 0, . . . , n− p− 1,

zn−p−t =

∞
∑

l=0

ψl

(

φ0(B
−1)zn−p−t+l

)

and zn−p−t(φ0) =

t
∑

l=0

ψl

(

φ0(B
−1)zn−p−t+l

)

.

Because there exist constants C ∈ (0,∞) and D ∈ (0, 1) such that |ψl| < CDl for all l ∈ {0, 1, . . .} (see

Brockwell and Davis [7], Section 3.3), using A7 and the mean value theorem we can show that

n−1/2

n−p
∑

t=1

∂gt(α0)

∂α
− n−1/2

n−p
∑

t=1

∂g∗t (α0)

∂α
→ 0

in L1 and hence in probability.
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Let u = (u′
p, u1,u

′
d)

′ ∈ IRp+d+1. By the Cramér-Wold device, it suffices to show

n−1/2

n−p
∑

t=1

Vt
d→ N

(

0, 2(σ2
0 J̃ − 1)u′

pσ
−2
0 Γpup + u2

1K̃ + 2u1u
′
dL+ u′

dIud

)

,

where Vt := u′∂g∗t (α0)/∂α. Elements of the infinite order moving average stationary sequence {Vt} can be

truncated to create a finite order moving average stationary sequence. By applying a central limit theorem

(Brockwell and Davis [7], Theorem 6.4.2) to each truncation level, asymptotic normality can be deduced.

The details are omitted. 2

Now consider the mixed partials of gt(α). For j, k = 1, . . . , p,

∂2gt(α0)

∂αj∂αk
=
f ′ (zt(φ0)/α0,p+1; θ0)

f (zt(φ0)/α0,p+1; θ0)

1

α0,p+1

∂2zt(φ0)

∂φj∂φk

+
∂zt(φ0)

∂φj

f ′′ (zt(φ0)/α0,p+1; θ0)

α2
0,p+1f (zt(φ0)/α0,p+1; θ0)

∂zt(φ0)

∂φk

−∂zt(φ0)

∂φj

(f ′ (zt(φ0)/α0,p+1; θ0))
2

α2
0,p+1f

2 (zt(φ0)/α0,p+1; θ0)

∂zt(φ0)

∂φk
. (28)

Because

∂2zt(φ0)

∂φj∂φk
=

1

φ2
0(B

−1)
{Xt+p+j−k +Xt+p+k−j + 2zt+j+k(φ0)}

≃ −zt+j−k − zt+k−j

φ0(B−1)φ0(B)
+

2zt+j+k

φ2
0(B

−1)

= −
∞
∑

m=0

∞
∑

ℓ=0

ψmψℓ(zt+j−k−ℓ+m + zt+k−j−ℓ+m) +
2zt+j+k

φ2
0(B

−1)
,

(28) is approximately

∂2g∗t (α0)

∂αj∂αk
:=

f ′ (zt/α0,p+1; θ0)

f (zt/α0,p+1; θ0)

1

α0,p+1

×
{

−
∞
∑

m=0

∞
∑

ℓ=0

ψmψℓ(zt+j−k−ℓ+m + zt+k−j−ℓ+m) +
2zt+j+k

φ2
0(B

−1)

}

+
f (zt/α0,p+1; θ0) f

′′ (zt/α0,p+1; θ0) − (f ′ (zt/α0,p+1; θ0))
2

α2
0,p+1f

2 (zt/α0,p+1; θ0)

×
{−zt−j

φ0(B)
+

zt+j

φ0(B−1)

}{−zt−k

φ0(B)
+

zt+k

φ0(B−1)

}

,

which has expectation −2σ−2
0 γ(j−k)(σ2

0 J̃−1). Similar arguments show that the approximations of the mixed

partials evaluated at the true parameter values have expectation zero for j = 1, . . . , p, k = p+1, . . . , p+d+1,
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−K̃ for j = k = p+ 1,

1

α0,p+1

∫

sf ′ (s; θ0)

f (s; θ0)

∂f (s; θ0)

∂θk−p−1
ds

for j = p+ 1, k = p+ 2, . . . , p+ d+ 1, and

−
∫

1

f (s; θ0)

∂f (s; θ0)

∂θj−p−1

∂f (s; θ0)

∂θk−p−1
ds

for j, k = p+ 2, . . . , p+ d+ 1.

Lemma 2 If f satisfies A1–A7, then, as n→ ∞,

n−1

n−p
∑

t=1

∂2gt(α0)

∂α ∂α′

P→















−2(σ2
0 J̃ − 1)σ−2

0 Γp 0p×1 0p×d

01×p −K̃ −L′

0d×p −L −I















= −Σ.

Proof: By A7,

n−1

n−p
∑

t=1

∂2gt(α0)

∂α ∂α′
− n−1

n−p
∑

t=1

∂2g∗t (α0)

∂α ∂α′

P→ 0,

and, by the ergodic theorem and the computations preceding the lemma,

n−1

n−p
∑

t=1

∂2g∗t (α0)

∂α∂α′

P→ −Σ.

2

Lemma 3 For u ∈ IRp+d+1, define

S†
n(u) = n−1/2

n−p
∑

t=1

u′ ∂gt(α0)

∂α
+

1

2
n−1

n−p
∑

t=1

u′ ∂
2gt(α0)

∂α∂α′
u

and

Sn(u) =

n−p
∑

t=1

[

gt

(

α0 + n−1/2u
)

− gt (α0)
]

.

If f satisfies A1–A7,
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1. S†
n

d→ S on C(IRp+d+1), where

S(u) := u′N− 1

2
u′Σu,

N ∼ N (0,Σ), and C(IRp+d+1) is the space of continuous functions on IRp+d+1 where convergence is

equivalent to uniform convergence on every compact set.

2. Sn
d→ S on C(IRp+d+1).

Proof:

1. The finite dimensional distributions of S†
n converge to those of S by Lemmas 1 and 2. Since S†

n is

quadratic in u, {S†
n} is tight on C(K) for any compact set K ⊂ IRp+d+1. Therefore, S†

n converges to

S on C(IRp+d+1) by Theorem 7.1 in Billingsley [2].

2. By a Taylor series expansion,

Sn(u) =

n−p
∑

t=1

[

gt

(

α0 + n−1/2u
)

− gt (α0)
]

= n−1/2

n−p
∑

t=1

u′ ∂gt(α0)

∂α
+

1

2
n−1

n−p
∑

t=1

u′ ∂
2gt(α0)

∂α ∂α′
u

+
1

2
n−1

n−p
∑

t=1

u′

(

∂2gt(α
∗
n(u))

∂α∂α′
− ∂2gt(α0)

∂α ∂α′

)

u

for some α∗
n(u) on the line segment connecting α0 and α0 + n−1/2u. If ‖ · ‖ measures Euclidean

distance, sup
u∈K ‖α∗

n(u) − α0‖ → 0 for any compact set K ⊂ IRp+d+1, and so using A7 we can show

that

n−1

n−p
∑

t=1

u′

(

∂2gt(α
∗
n(u))

∂α ∂α′
− ∂2gt(α0)

∂α ∂α′

)

u
P→ 0

on C(IRp+d+1). Thus, {Sn} must have the same limiting distribution as {S†
n} on C(IRp+d+1).

2
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